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Motivation for an implicit MHD solver

• The MHD formalism is a nonlinear system of stiff equations:

– Elliptic stiffness (transport).
– Hyperbolic stiffness (linear waves: magnetosonic, Alfvén, sound, whistler,...).

• Explicit methods:

– Straightforward but inefficient (numerical stability).

• Semi-implicit methods:

– Popular, efficient, but potentially inaccurate (linearization, splitting, simplifications in
semi-implicit operator).

• Implicit methods: accurate and efficient, but of difficult implementation:

– Non-linear couplings in equations.
– Ill-conditioned matrices due to elliptic operators and stiff waves.

• Here, a viable, scalable implicit strategy using Newton-Krylov methods is explored.

• At the core of the approach is the so-called physics-based preconditioning strategy.
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Properties of spatial discretization
L. Chacón, Comput. Phys. Comm., 163 (3), 143-171 (2004)

• A cell-centered (collocated) difference scheme has been devised that:

– Is conservative in particles and momentum (energy also if energy equation is chosen
instead of temperature).

– Is solenoidal in the magnetic field.
– Is linearly (no red-black modes) and nonlinearly (no anti-diffusive terms) stable in

the absence of physical and/or numerical dissipation.
– Eliminates the “parallel force” problem of the conservative formulation of EOM.
– Is suitable for curvilinear representations (as needed in fusion applications).

• While only 2D tests have been presented, all properties carry to 3D (the code is fully
3D capable).

• Crucial to the scheme is the so-called ZIP differencing, which satisfies very desirable
properties such as:

– Being conservative.
– Mimics the chain rule of derivatives exactly.
– Modified equation (truncation error) contains no anti-diffusive terms.
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Implicit resistive MHD solver
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Resistive MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂ ~B

∂t
+ ∇× ~E = 0,

∂(ρ~v)

∂t
+∇ ·

h

ρ~v~v − ~B ~B − ρν∇~v +
←→
I (p +

B2

2
)

#

= 0,

∂T

∂t
+ ~v · ∇T + (γ − 1)T∇ · ~v = 0,

• Plasma is assumed polytropic p ∝ nγ.

• Resistive Ohm’s law:
~E = −~v × ~B + η∇× ~B
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Jacobian-Free Newton-Krylov Methods

• Objective: solve nonlinear system ~G(~xn+1) = ~0 efficiently.

• Converge nonlinear couplings using Newton-Raphson method:
∂ ~G

∂~x

˛
˛
˛
˛
˛
k

δ~xk = −~G(~xk) .

• Jacobian-free implementation:

 

∂ ~G

∂~x

!

k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

• Krylov method of choice: GMRES (nonsymmetric systems).

• Right preconditioning: solve equivalent Jacobian system for δy = Pkδ~x:

JkP
−1
k Pkδ~x
| {z }

δ~y

= ~−Gk

APPROXIMATIONS IN PRECONDITIONER DO NOT AFFECT ACCURACY OF

CONVERGED SOLUTION; THEY ONLY AFFECT EFFICIENCY!
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Concept of physics-based preconditioning

• Developing AN implicit Newton-Krylov MHD solver is “EASY”:

JUST BUILD NONLINEAR FUNCTION EVALUATION ROUTINE!

• Developing an EFFICIENT Newton-Krylov MHD solver is “HARD”: need SCALABLE
preconditioning.

– Elliptic and parabolic systems: use scalable MG methods. Usually OK.
– Hyperbolic systems: diagonally submissive, not amenable to MG. HARD!

• Physics-based preconditioning: technique to develop effective, SCALABLE precondi-
tioners for hyperbolic systems. Based on two concepts:

– SEMI-IMPLICIT approximations: limit level of implicitness based on physical insight.
– PARABOLIZATION: from hyperbolic to parabolic: a MG-friendly formulation.

Luis Chacón, chacon@lanl.gov



Parabolization and Schur complement: an example

• PARABOLIZATION EXAMPLE:

∂tu = ∂xv , ∂tv = ∂xu.

u
n+1

= u
n

+ ∆t∂xv
n+1

,

v
n+1

= v
n

+ ∆t∂xu
n+1

.

(I −∆t
2
∂xx)u

n+1
= u

n
+ ∆t∂xv

n

• PARABOLIZATION via SCHUR COMPLEMENT:
»

D1 U
L D2

–

=

»
I UD−1

2
0 I

– »
D1 − UD−1

2 L 0

0 D2

– »
I 0

D−1
2 L I

–

.

Stiff off-diagonal blocks L, U now sit in diagonal via Schur complement D1 − UD−1
2 L.

The system has been “PARABOLIZED.”

D1 − UD
−1
2 L = (I −∆t

2
∂xx)
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Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT (δT, δ~v)

δ ~B = LB(δ ~B, δ~v)

δ~v = Lv(δ~v, δ ~B, δρ, δT )

• Therefore, the Jacobian of the resistive MHD model has the following coupling struc-
ture:

Jδ~x =

2

6
6
4

Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UvB

Lρv LTv LBv Dv

3

7
7
5

0

B
B
B
@

δρ

δT

δ ~B

δ~v

1

C
C
C
A

• Diagonal blocks contain advection-diffusion contributions, and are “easy” to invert using
MG techniques. Off diagonal blocks L and U contain all hyperbolic couplings.

Luis Chacón, chacon@lanl.gov



PARABOLIZATION: Schur complement formulation

• We consider the block structure:

Jδ~x =

»
M U

L Dv

–„
δ~y

δ~v

«

δ~y =

0

@

δρ

δT

δ ~B

1

A ; M =

0

@

Dρ 0 0

0 DT 0

0 0 DB

1

A

• M is “easy” to invert (advection-diffusion, MG-friendly).

Schur complement analysis of 2x2 block J yields:

»
M U

L Dv

–−1

=

»
I 0

−LM−1 I

– »
M−1 0

0 P−1
Schur

– »
I −M−1U

0 I

–

,

PSchur = Dv − LM
−1

U .

• EXACT Jacobian inverse only requires M−1 and P−1
Schur.

• Schur complement formulation is fundamentally unchanged in Hall MHD!

Luis Chacón, chacon@lanl.gov



Physics-based preconditioner: SEMI-IMPLICIT approximation

• The Schur complement analysis translates into the following 3-step EXACT inversion
algorithm:

Predictor : δ~y
∗
= −M

−1
Gy

Velocity update : δ~v = P
−1
Schur[−Gv − Lδ~y

∗
], PSchur = Dv − LM

−1
U

Corrector : δ~y = δ~y
∗
−M

−1
Uδ~v

• MG treatment of PSchur is impractical due to M−1.

Need suitable simplifications (SEMI-IMPLICIT)!

• We consider the small-flow-limit case: M
−1
≈ ∆t

• This approximation is equivalent to splitting flow in original equations.
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Small flow PC

• Small flow approximation: M−1
≈ ∆t in steps 2 & 3 of Schur algorithm:

δ~y
∗

= −M
−1

Gy

δ~v ≈ P
−1
SI [−Gv − Lδ~y

∗
] ; PSI = Dv −∆tLU

δ~y ≈ δ~y
∗
−∆tUδ~v

where:

PSI = ρ
n
h
←→
I /∆t + θ(~v0 · ∇

←→
I +

←→
I · ∇~v0 − ν

n
∇

2←→
I )
i

+ ∆tθ
2
W ( ~B0, p0)

W ( ~B0, p0) = ~B0 ×∇×∇× [
←→
I × ~B0]−~j0 ×∇× [

←→
I × ~B0]−∇[

←→
I · ∇p0 + γp0∇ ·

←→
I ]

• PSI is block diagonally dominant by construction!

• We employ multigrid methods (MG) to approximately invert PSI and M : 1 V(4,4) cycle
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Efficiency: ∆t scaling (2D tearing mode)

32× 32

∆t Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆tCFL

2 5.9 20.9 115 3.1 354
3 5.9 25.6 139 3.8 531
4 6.0 30.5 163 4.3 708
6 6.0 34.7 184 5.8 1062

128× 128

∆t Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆tCFL

0.5 4.9 8.4 764 8.0 380
0.75 5.7 10.2 908 10.0 570
1.0 5.0 11.5 1000 12.7 760
1.5 5.6 14.7 1246 14.6 1140
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Efficiency: grid scaling

∆t ≈ 1100∆tCFL, 10 time steps

Grid ∆t Newton/∆t GMRES/∆t CPU ĈPU

32x32 6 6.0 34.7 184 5.3
64x64 3 5.8 22.9 468 20.4

128x128 1.5 5.6 14.8 1246 84.2

Why does GMRES/∆t decrease with resolution?
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Effect of spatial truncation error
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Sample 3D results: Screw pinch in 3D
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Sample 3D results: 3D KHI
Knoll and Brackbill, Phys. Plasmas 9 (9) 2002
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Implicit extended MHD solver
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Extended MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂ ~B

∂t
+ ∇× ~E = 0,

∂(ρ~v)

∂t
+∇ ·

h

ρ~v~v − ~B ~B − ρν∇~v +
←→
I (p +

B2

2
)

#

= 0,

∂Te

∂t
+ ~v · ∇Te + (γ − 1)Te∇ · ~v = 0,

• Plasma is assumed polytropic p ∝ nγ.

• We assume cold ion limit: Ti � Te ⇒ p ≈ pe .

• Generalized Ohm’s law:

~E = −~v × ~B + η∇× ~B −
di

ρ
(~j × ~B −∇pe)
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Extended MHD Jacobian block structure

• The linearized extended MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT (δT, δ~v)

δ ~B = LB(δ ~B, δ~v, δρ, δT )

δ~v = Lv(δ~v, δ ~B, δρ, δT )

• Jacobian coupling structure:

Jδ~x =

2

6
6
4

Dρ 0 0 Uvρ

0 DT 0 UvT

LρB LTB DB UvB

Lρv LTv LBv Dv

3

7
7
5

0

B
B
B
@

δρ

δT

δ ~B

δ~v

1

C
C
C
A

• We have added off-diagonal couplings.
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Extended MHD Jacobian block structure (cont.)

• The coupling structure can be substantially simplified if we note (p ≈ pe):

1

ρ
(~j × ~B −∇pe) ≈

D~v

Dt

and therefore:
~E ≈ −~v × ~B +

η(T )

µ0

∇× ~B − di

D~v

Dt

• This transforms jacobian coupling structure to:

Jδ~x ≈

2

6
6
4

Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UR
vB + UH

vB

Lρv LTv LBv Dv

3

7
7
5

0

B
B
B
@

δρ

δT

δ ~B

δ~v

1

C
C
C
A

We can therefore reuse ALL resistive MHD PC framework!
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Extended MHD preconditioner

• Use same Schur complement approach.

• M block contains ion scales only! Approximation M−1
≈ ∆t is very good in extended

MHD (ion scales do NOT contribute to numerical stiffness).

• Additional block UH
vB results, after the Schur complement treatment, in systems of the

form:

∂tδ~v − di
~B0 × (∇×∇× δ~v) = rhs

• This system supports dispersive waves ω ∼ k2!

• We have shown analytically that damped JB is a smoother for these systems!

We can use classical MG!
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Preliminary efficiency results (2D tearing mode)

di = 0.05

1 time step, ∆t = 1.0, V(3,3) cycles, mg tol=1e-2

Grid Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆texp

32x32 5 22 25 0.44 110
64x64 5 12 66 1.4 238

128x128 5 8 164 6.2 640
256x256 4 7 674 30 3012

Again, GMRES/∆t decreases with resolution!
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Effect of spatial truncation error
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GEM Challenge
J. Birn et al., J. Geophys. Res., 106 (A3), p.3715-19 (2001)
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Parallel performance with PETSc Toolkit (unpreconditioned)
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Conclusions and future work

• Physics-based preconditioning for hyperbolic systems: parabolization, semi-implicit ap-
proximation.

• Parabolization: Schur decomposition.

• Semi-implicit approximation: appropriate simplification of exact Schur decomposition.

• Concept tested for MHD stiff waves, in both resistive (mature), Hall (proof-of-principle)
primitive variables formulations.

• Highlights:

– SCALABILITY: CPU ∼ O(N) (MG based)
– WINS OVER EXPLICIT METHODS: CPU speedup up to 30!.

• Future work:

– Characterize Hall MHD more exhaustively.
– Demonstrate preconditioning scalability in 3D.
– Extend efficiency results to other geometries.
– Parallelization: incorporate preconditioner in PETSc parallel version.
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